

®

Implementing Logic
with the Embedded Array

in FLEX 10K Devices

January 1996, ver. 1 Product Information Bulletin 21

Introduction Altera’s FLEX 10K devices are the first programmable logic devices
(PLDs) to contain embedded arrays, which allow designers to quickly
create, prototype, and debug complex designs. Unlike embedded
functions in a gate array, the FLEX 10K embedded array is fully
programmable, giving the designer complete control over the functions
programmed in the embedded array. The FLEX 10K embedded array is
composed of a series of embedded array blocks (EABs), which can be used
to implement memory and logic functions. EABs can also be reconfigured
on-the-fly, allowing designers to change a portion of a design without
disturbing the operation of the rest of the device.

This product information bulletin describes the capabilities of the
FLEX 10K embedded array, and how designers can use the EAB to
implement logic in a variety of applications. The following topics are
discussed:

■ Logic cells vs. EABs
■ Configuring the EAB as a look-up table
■ Embedded vs. distributed RAM
■ Applications
■ On-the-fly reconfiguration

Logic Cells
vs. EABs

Logic cells, which contain combinatorial logic and registers, can
implement relatively simple functions such as one bit of an adder or a
small multiplexer. To implement complex, high fan-in functions, the
function must be divided among multiple logic cells, which are connected
using additional logic. The number of logic cells required increases
rapidly as the function becomes more complex.

In contrast, the FLEX 10K embedded array implements complex functions
in a single logic level, resulting in more efficient device utilization and
higher performance. Thus, many complex functions implemented in an
EAB will occupy less area on a device, have a shorter delay, and operate
faster than functions implemented in logic cells.

An EAB can implement any combinatorial function, such as a 4 × 4
multiplier, provided the function does not exceed the permitted number
of inputs and outputs to the EAB. Depending on its configuration, an EAB
can have 8 to 11 inputs and 1 to 8 outputs, all of which can be registered
for pipelined designs. See Table 1.
Altera Corporation 1

A-PIB-021-01

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

EABs can be cascaded to implement functions that require more inputs or
outputs than are available in a single EAB. Each EAB can have a
maximum of 11 inputs and 1 output. Therefore, a function with 11 inputs
and 2 outputs is divided into two EABs, so that each EAB has 11 inputs
and 1 output.

Reconfiguring the EAB for a different number of inputs and outputs does
not affect its performance. The delay in an EAB remains constant,
provided the function fits into the EAB (i.e., has a permissible number of
inputs and outputs). Likewise, the delay in each EAB is the same for two
functions that each fit into an EAB. For instance, the delay in the EAB for
a 6-input function and the delay in the EAB of an 8-input function are the
same.

In addition, the timing performance in an EAB does not change as its
configuration size changes. EABs can be cascaded to form RAM blocks up
to 2,048 words without affecting performance. The EAB RAM size is
flexible and can be configured as any of the following sizes: 256 × 8,
512 × 4, 1,024 × 2, or 2,048 × 1. The appropriate configuration size depends
on the function to be implemented; for instance, an EAB is configured as
256 × 8 to implement an 8-input, 8-output function. Larger RAMs are
created by combining multiple EABs. Thus, two 256 × 8 RAMs can be
combined to form a 256 × 16 RAM without a timing penalty.

Configuring the
EAB as a
Look-Up Table

Logic functions are implemented by programming the EAB during
configuration with a read-only pattern, creating a large look-up table
(LUT). The pattern can be reconfigured during device operation to change
the logic function. The LUT looks up the results of the functions rather
than using algorithms to calculate them.

When a logic function is implemented in an EAB, the input data is driven
in on the address input of the EAB. The result is looked up in the LUT and
driven out on the output port. Using the LUT to find the result of a
function is faster than using algorithms implemented in general logic.

Table 1. Inputs and Outputs per EAB

Inputs Outputs

8 8

9 4

10 2

11 1
2 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

For example, in a 4 × 4 multiplier with two 4-bit inputs and one 8-bit
output implemented in an EAB, the two input buses drive the address
inputs of the EAB. The data output of the EAB drives out the product.
See Figure 1.

Figure 1. Implementing a 4 × 4 Multiplier in an EAB

The EAB acts as a LUT to find the product. Table 2 shows part of the
pattern used to implement a 4 × 4 multiplier. Values are shown in
hexadecimal radix.

EAB

ADDR[7..4]

ADDR[3..0]

Q[7..0]

A[3..0]

B[3..0]

Q[7..0]

A[3..0]

B[3..0]
Q[7..0]

Table 2. Portion of EAB Pattern for Implementing a 4 × 4 Multiplier

ADDR[7..4]
(Input A)

ADDR[3..0]
(Input B)

Q[7..0]
(Product)

0 0 00

0 1 00

2 4 08

7 2 0E

A A 64

A B 6E
Altera Corporation 3

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Embedded vs.
Distributed
RAM

The FLEX 10K embedded RAM implements logic functions more
efficiently than distributed RAM. Distributed RAM, as used in field-
programmable gate arrays (FPGAs), allows the designer to use a
particular array of memory cells either as part of the general logic array or
as addressable RAM. However, using distributed RAM provides only
small RAM blocks such as 16 × 2 or 32 × 1. Using distributed RAM for
applications larger than 32 × 1 results in lower performance and lower
device utilization. To create larger RAM blocks, the small RAM blocks
must be interconnected using additional logic cells. However, adding
logic cells can cause less predictable delays, routing problems, and can
reduce the amount of available logic for implementing other functions.
Therefore, there is no advantage gained from implementing logic
functions with distributed RAM than with logic cells.

In contrast, FLEX 10K devices dedicate a portion of the device to
embedded RAM. Embedded RAM is implemented in the EAB, which is a
large block of flexible RAM. Altera’s MAX+PLUS II development
software automatically cascades EABs to implement blocks of RAM larger
than 2,048 × 1. Because the EAB is inherently a large RAM block, the EAB
can implement complex logic functions in a single logic level, so
additional logic cells are not required. FLEX 10K devices can offer as
much as 24 Kbits of RAM without sacrificing logic capacity. Therefore,
implementing logic functions with embedded RAM in FLEX 10K EABs
results in higher resource utilization and predictable performance.

Manufacturers of distributed-RAM FPGAs claim that embedding large
blocks of RAM into a programmable device is inefficient because die area
is wasted if a design does not use RAM. However, EABs that are not used
as memory will be used as logic, and most designs will contain some
complex logic functions that can be implemented by EABs.

Applications EABs can be used for a variety of specialized logic applications, including:

■ Symmetric multiplier
■ Asymmetric multiplier
■ Constant multiplier/vector scalar
■ Digital filter
■ Two-dimensional convolver
■ State machine
■ Transcendental functions
■ Waveform generator
■ 8 bit-to-10 bit encoder
4 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Symmetric Multiplier

A symmetric multiplier multiplies two inputs of the same width. An EAB
can easily implement a 4 × 4 multiplier, which has two 4-bit inputs and
one 8-bit output. The EAB drives the two multiplicands into the address
input and reads the product from the data output. For example, to
multiply the number 2 by the number 4, 4 bits of the address input
represent the number 2, and the other 4 bits represent the number 4.
Because multiplication is commutative, address locations 24 and 42 both
store the value 08.

Designers can create larger multipliers by using parallel multipliers or
time-domain-multiplexed multipliers to combine EABs.

Parallel Multiplier

A parallel multiplier uses multiple EABs to generate all partial products
in parallel. A parallel multiplier uses 4 EABs for an 8 × 8 multiplier
(i.e., 1 EAB for each partial product). Each of the 4 EABs simultaneously
processes a portion of the input to generate a 4 × 4 product, yielding a
total of four 4 × 4 products. A two-stage adder implemented in the logic
cells produces the final result. For example, MN is multiplied by XY in
Figure 2. Each letter in the multiplicands represents four bits of the input;
M represents the four most significant bits (MSBs), and N represents the
four least significant bits (LSBs). Before summing the products, the
products are multiplied by 16n (where n = 0, 1, 2...) to account for their
relative significance in hexadecimal radix. Larger multipliers are created
with additional EABs.

Figure 2. 8 × 8 Multiplier Implemented in an EAB

MN
× XY

One EAB computes
each partial product.

Adder sums the
shifted products.

MY NY
 + MX NX

 MX × 162 + (MY + NX) × 161 + NY × 160
Altera Corporation 5

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Time-Domain-Multiplexed Multiplier

A time-domain-multiplexed multiplier uses a single EAB to generate all
the partial products on different Clock cycles. Multiplexers at the input of
the EAB route the appropriate inputs into the EAB, and the EAB calculates
each partial product at a different time. After each multiplication is
performed, the products are multiplied by 16n (i.e., shifted left) to account
for their relative significance in hexadecimal radix. An accumulator adds
the four partial products to produce the final result. For an 8 × 8
multiplier, the time-domain-multiplexed multiplier requires four Clock
cycles. The required number of Clock cycles can be reduced by using more
EABs. Larger multipliers are created with additional EABs, or by
increasing the required number of Clock cycles.

Asymmetric Multiplier

An asymmetric multiplier multiplies two inputs of different widths. For
example, one EAB can implement a multiplier that multiplies a 2-bit input
by a 6-bit input to create an 8-bit output. Like symmetric multipliers,
larger asymmetric multipliers are created using parallel multipliers or
time-domain-multiplexed multipliers to combine multiple EABs. Each
EAB computes one of the partial products, and adders are used to sum the
products. Therefore, a 10 × 6 multiplier can be created from 5 EABs.
Figure 3 shows how each EAB in an asymmetric multiplier computes a
partial product.

Figure 3. Asymmetric Multiplier Implemented in an EAB

Values are shown in hexadecimal radix.

f Go to Application Note 53 (Implementing Multipliers in FLEX 10K Devices) for
more information about implementing multipliers.

LY MY NY
+ LX MX NX

LMN
× XY

 LX × 163 + (LY + MX) × 162 + (MY + NX) × 161 + NY × 160
6 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Constant Multiplier / Vector Scalar

The embedded array can efficiently implement constant multipliers. The
constant multiplier is used for datapath applications such as video and
digital signal processing (DSP) that require a series of numbers (a vector)
to be multiplied or scaled by a constant.

The value of the constant determines the EAB pattern used to implement
the function. The contents of an EAB LUT can be changed at any time
because the EAB can be reconfigured. The value of the constant changes
whenever the RAM is modified.

1 See “On-the-Fly Reconfiguration” in this product information
bulletin for more information.

Depending on the width and the required precision of the data, one or
more EABs can be used to perform the multiplication. For instance, one
256 × 8 EAB can multiply a 4-bit number by 13 (a 4-bit value) without any
truncation. The 4-bit input drives the address input, and the output
appears on the data output.

The required precision of the output must be determined before
multiplying larger numbers in an application. If the output does not
require full precision, the output can be truncated to minimize the
number of EABs needed to calculate the result. If precise output is
required, multiple EABs must be used. For example, if a series of 8-bit
variables are multiplied by an 8-bit constant, the result could be as large
as 16 bits. If only 8-bit precision is required, one EAB can calculate the
product because the 256 × 8 EAB has 8-bit-wide input and output ports. If
full precision is required, one EAB calculates the 8 MSBs, and another
EAB calculates the 8 LSBs. Figure 4 shows how a constant multiplier is
implemented in multiple EABs.

Figure 4. Constant Multiplier Implemented in Multiple EABs

Computes the 8 LSBs
8 16

8

8 EAB
256 × 8

EAB
256 × 8

Computes the 8 MSBs
Altera Corporation 7

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Digital Filter

Digital systems are being used more frequently for filtering applications.
A common digital filter is the finite impulse response (FIR) filter, which
shifts incoming data through a series of registers. The output of each bank
of registers is called a tap. The output per time period is the sum of all
taps, which is calculated by multiplying each tap by a coefficient and
summing the products.

The filter’s frequency response is determined by the value of the
coefficients used in the design. In a linear phase response FIR filter, the
coefficients are symmetric, i.e., the coefficient for tap n is equal to the
coefficient for tap (m – n – 1), where m is the total number of taps. For
example, if there are 8 taps, the coefficients for tap 1 and tap 6 are equal.
Because the coefficients for tap 1 and tap 6 are equal, only half the number
of multipliers are needed to calculate the output per time period; using the
distributive property of multiplication, the taps with the same coefficients
are summed before multiplication, e.g., ac0 + bc0 = c0(a + b), where c0 is a
coefficient. Figure 5 shows a schematic diagram of a 4-tap FIR filter.

Figure 5. 4-Tap FIR Filter

Data In
8

Data Out

D D DD

Coefficient multiplication
is performed in the
embedded array.

8

9 9

8 8 8 8

Multiply by C0 Multiply by C1
8 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

The EAB, configured as a LUT, can implement a FIR filter by performing
the coefficient multiplication for all taps. The multiplication for all taps is
spread across several EABs, with each EAB calculating the partial
products for 1 bit of each tap. For example, EAB 0 calculates the partial
products for bit 0 of each tap. Then, the EAB outputs are summed by an
adder in the logic array. The FLEX 10K carry chain is designed to
implement fast, compact adders.

The required precision on the output and the number of taps in the FIR
filter determine the EAB configuration used to implement the FIR filter.
For 8-bit precision on the output, each EAB is configured with 8 outputs.
The number of taps in the FIR filter determines the number of inputs
required for each EAB; if the coefficients are symmetric, only half the
number of inputs are required because the filter can sum the taps with the
same coefficients before multiplying. Thus, using EABs with 8 inputs
implements a FIR filter with a maximum of 16 taps.

Implementing a FIR filter with an embedded array can be more efficient
than implementing a FIR filter with logic elements (LEs). An EAB has up
to 8 inputs and 8 outputs, and could implement a 16-tap FIR filter without
using complex logic to compute the coefficient multiplication. An LE has
only 4 inputs, and would require multiple levels of logic to implement a
FIR filter that required more than 8 taps. The EAB can be reconfigured
on-the-fly, allowing the coefficients used in the FIR filter to be changed
without disturbing the operation of the rest of the device.

Two-Dimensional Convolver

The embedded array can efficiently implement two-dimensional
convolvers, which are used to process video images. For example, the
convolver sharpens the edges of a picture for output in a technique called
edge enhancement. The convolver processes the video information in
small pieces, such as a 3 × 3 matrix, and then multiplies each pixel in the
matrix by a constant coefficient. Because the coefficient values are usually
symmetric, the number of multipliers needed is reduced by summing the
multiplicands with the same coefficient before multiplying. The new
value of the center pixel is the sum of all the matrix multiplications.
Figure 6 shows a block diagram of a two-dimensional convolver.
Altera Corporation 9

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Figure 6. Two-Dimensional Convolver

Xn represents the value of a pixel.

In general, the convolver and the FIR filter process data in a similar
manner. FIR filters process a one-dimensional stream of data, and do not
require first-in-first-out (FIFO) buffers for storing the data. Convolvers
process a two-dimensional matrix of data, and the FIFO buffers store the
data that is driven in from the inputs. The FIFO buffers are implemented
with EABs. In the convolver implementation shown in Figure 6, two line
FIFOs buffer each line as it is driven in from the external source. The depth
of the FIFO buffer equals the width of the video matrix.

D

D

Data In D D D

D

D

D

D

X1 X2

X3 X4 X5

X6 X7 X8

FIFO

FIFO

Data Out

X4

X0
X2
X6
X8

X3

X5

X1

X7

Multiply by C0

Multiply by C1

Multiply by C2

Multiply by C3

X0
10 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

Like a FIR filter, the convolver is implemented with an EAB configured as
a LUT that performs the coefficient multiplication. Four taps are required
in Figure 6. Because the number of inputs to the LUT equals the number
of taps required, only 4-input LUTs are required to implement the
convolver. This convolver can be implemented in a FLEX 10K LE, which
has four inputs.

Depending on the type of video processing desired, some of the tap
coefficients may be equal. In Figure 6, the coefficient of the 4 taps
(X0, X2, X6, X8) is the same (C1); therefore, the outputs of the 4 taps are
summed before multiplication. If 8-bit data is convolved, the sum is 10
bits. For 10-bit precision on the input, 10 LUTs are required. Each of the 10
LUTs requires 8 outputs for 8-bit precision on the output.

State Machine

The embedded array can also be used to implement highly complex state
machines. As a state machine becomes more complex (i.e., has additional
transitions), the number of LEs required to implement the state machine
increases, but the number of EABs required remains constant. The
number of EABs required to implement a state machine is simply a
function of the number of states, inputs, and outputs to the state machine.
Therefore, the same number of EABs is required for two state machines
with a different number of transitions but with the same number of states,
inputs, and outputs.

The embedded array can implement general-purpose and limited-
transition state machines. General-purpose state machines can have
complex transitions between states, but in turn have only a finite number
of states. Limited-transition state machines can implement more states in
a given amount of logic, but consequently cannot have very complex
transitions.

General-Purpose State Machine

The embedded array effectively implements general-purpose state
machines with very complex transitions between states. The number of
EABs required to implement the state machine does not change if the
transitions become more complex.
Altera Corporation 11

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

The address input to the EAB is a combination of bits representing the
inputs to the state machine and the current state. For example, in a 16-
state, 4-input, 4-output state machine, signals representing the 4 inputs to
the state machine drive ADDR[7..4], and signals representing the current
state drive ADDR[3..0]. Each address input to the EAB contains two
fields: the outputs for the current state and state bits that indicate the next
state. To design a Moore state machine, the design uses the input registers
of the EAB. To design a Mealy state machine, the design uses LEs to
register only the address bits that represent the current state. Figure 7
shows the implementation of a 16-state, 4-input, 4-output Moore state
machine.

Figure 7. Moore State Machine Implemented in an EAB

Figure 8 shows a state machine implemented in a portion of an EAB. The
contents of the table control the behavior of the state machine. For
example, in state 0 with state machine inputs equal to 0, the state machine
transitions to state 1; in state 1 with state machine inputs equal to 5, the
state machine transitions to state 5. These transitions are indicated in the
first and fifth rows of the table, respectively.

ADDR[3..0]

ADDR[7..4]

Q[3..0]

Q[7..4]

EAB
256 × 8

Input

Registered
Inputs

Output
12 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
Figure 8. State Machine Inputs Implemented in a Portion of an EAB

State machine input and output values are shown in hexadecimal radix.

State State Machine Inputs
ADDR[7..4]

Current State
ADDR[3..0]

Outputs
Q[7..4]

Next State
Q[3..0]

S0 0 0 0 1

S0 1 0 0 2

S0 2 0 1 3

S1 4 1 3 0

S1 5 1 4 5

S2 A 2 1 1

S2 7 2 A 5

S3 2 3 C 1

S3 E 3 7 4

S4 0 4 2 5

S4 F 4 F 3

S5 3 5 2 5

S5 2 5 4 0

S0

S1

S2

S4

S5

S3

4

1

2

2
0

A

5

FE

3
0

2

7

Altera Corporation 13

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
The size of the state machine’s required memory is calculated from its
memory width and memory depth. Memory width is a function of the
number of outputs and the number of states; memory depth is a function
of the number of inputs and the number of states.

Memory width = Q + C (log2 (S))

Memory depth = 2 (D + C (log2 (S)))

where Q = Number of outputs
C = Ceiling (The ceiling function returns the next highest integer

value, i.e., ceiling (1.0) = 1, ceiling (1.1 ... 1.9) = 2.)
S = Number of states
D = Number of inputs

If the required memory space is larger than can fit into one EAB, the
MAX+PLUS II development software can cascade multiple EABs to create
the required memory space.

Limited-Transition State Machine

A limited-transition state machine can implement more states in a given
amount of logic, but consequently cannot have very complex transitions
between states. Figure 9 shows a hold-or-transition state diagram for a
limited-transition state machine.

Figure 9. Hold-or-Transition State Diagram

An EAB can control whether a limited-transition state machine remains in
the current state or transitions to the next state. First, the inputs to the state
machine drive the combinatorial logic implemented in the logic array. The
combinatorial logic controls the Count Enable (CNT_EN) of the counter.
Then, the outputs of the counter drive the EAB inputs, which produce the
outputs for that state. For example, an 8-bit counter with one EAB can
implement an 8-output, 256-state state machine. See Figure 10.

S0 S2 S3 S4 S5 S6S1
14 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
Figure 10. Implementing a Hold-or-Transition State Machine

If a state machine requires fewer than the maximum number of possible
states, the counter can be reset by adding logic. The counter resets after
reaching a count value that equals the required number of states.
Therefore, if an 8-output state machine with a maximum of 256 states
requires only 200 states, adding logic will reset the counter when it
reaches 199 states.

Transcendental Functions

Calculating transcendental functions—such as sine, cosine, and
logarithms—with small logic blocks is slow and consumes a large die
area. Transcendental functions are non-linear, so they are difficult to
compute using algorithms. It is more efficient to implement
transcendental functions by looking up the results in large LUTs, which
can be implemented with EABs.

When using an EAB to implement a transcendental function, the input
drives the address input of the EAB, and the output appears at the data
output. Each address location in the EAB stores the result of its input
(e.g., the result of the function implemented with input = 10 is stored in
address location 10).

Rather than duplicating entries for +n and –n in symmetric functions
(e.g., cos(+n) = cos(–n), and sin(+n) = –sin(–n)), transcendental functions
use the sign bit to determine whether the output should be inverted. To
compute the sine function, for example, the EAB stores the values for one
quadrant of the function. Based on the value of the input, the LE computes
the results for the other quadrants by determining whether the inputs or
outputs of the EAB should be inverted. Figure 11 shows how the values
for one quadrant of the sine function can repeat for the rest of the function.

OutputInput
Combinatorial

Logic
A[7..0] Q[7..0]

EAB
256 × 8

CNT_EN Q[7..0]

Counter
Altera Corporation 15

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
Figure 11. Computing the Sine Function

Computing transcendental functions with an EAB produces a high-
resolution result, where resolution is the minimum change in input to
change in output. An EAB produces high-resolution results because it can
implement functions with high numbers of inputs, whereas LEs cannot
easily implement such complex functions. The more entries that can be
stored in the EAB, the higher the resolution. One EAB can store 256 8-bit
entries. Therefore, an EAB used to calculate a symmetric function
effectively has 1,024 8-bit entries because symmetric functions can use
each entry in the EAB 4 times, once for each quadrant of the function. For
example, computing a sine wave with an EAB produces a resolution of
0.35°.

To increase the precision and resolution on the output of the
transcendental function, multiple EABs are used. To increase the
precision, 1 EAB can look up the 8 MSBs while another EAB looks up the
8 LSBs of the result. To increase resolution, 2 EABs can be used to emulate
a 512 × 8 ROM, which provides 2,048 8-bit entries and a resolution of
0.18°.

Waveform Generator

After a sine function has been implemented, the EAB can generate a sine
wave. If a counter drives the input of the sine function, the output is a
digitized sine wave, and this digital output can be driven to a digital-to-
analog converter. A sine wave can be used for various DSP functions.

EAB outputs
are inverted.

EAB inputs
are inverted.

EAB only stores values for one quadrant; other
quadrants are produced by inverting inputs
and/or outputs.

EAB inputs
and outputs
are inverted.
16 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
The EAB can be used to generate waveforms that repeat over time
(e.g., sine wave). The waveform generator is implemented with a counter
that drives the address input of the EAB, and the waveform output
appears on the output of the EAB. Because an EAB can be up to 8 bits
wide, 1 EAB can simultaneously generate 8 waveforms. Multiple EABs
can be cascaded to generate additional waveforms. The waveform can be
irregular within its period because it is created with an LUT.

8 Bit-to-10 Bit Encoder

An 8 bit-to-10 bit encoder is used in telecommunications systems. In
asynchronous serial telecommunications, the receiving system must
synchronize itself while reading the incoming serial data. If the incoming
serial data contains a long sequence of 0 or 1 values, the receiving system
has trouble synchronizing itself because it cannot detect exactly how
many 0s or 1s it has received. To prevent a long sequence of 0s or 1s, the
sending system encodes each byte of data into a 10-bit code. There are 768
possible combinations of 10-bit data code that do not correspond to a byte
(10-bit data code has 1,024 combinations and a byte has only 256
combinations). If the incoming data code does not correspond to a byte,
the receiving system assumes there has been a data transmission error and
signals the sending system to re-transmit the data.

Implementing the encoding or decoding circuits consumes many small
logic blocks because the relationship between the 8-bit and 10-bit data is
non-linear.

Two 256 × 8 EABs configured as LUTs can be used to encode 8-bit data
into 10-bit data. Each EAB is fed by the 8-bit incoming data. One EAB
looks up the 5 LSBs of the output, and the other looks up the 5 MSBs. A
shift register on the output can serialize the outgoing data. See Figure 12.

Figure 12. 8 Bit-to-10 Bit Encoder

Data In
EAB

256 × 8

EAB
256 × 8

8 5 10

5

Encoded
Data Out

Computes the 5 LSBs

Computes the 5 MSBs
Altera Corporation 17

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
The incoming data is decoded using 4 EABs, each configured as 1,024 × 2.
The 10-bit encoded data feeds each EAB, which generates 2 bits of the
original data byte. An additional EAB can detect whether one of the 768
illegal 10-bit combinations is received. A shift register can be used on the
input to convert incoming serial data to parallel data. Figure 13 shows the
implementation of this 10 bit-to-8 bit decoder.

Figure 13. 10 Bit-to-8 Bit Decoder

Other Applications

In addition to the specialized logic applications described in this
document, the capabilities of FLEX 10K EABs also allow designers to
implement a wide variety of complex combinatorial functions. New
combinatorial functions can easily be implemented in the EAB using
Altera’s MAX+PLUS II development software. Logic options in
MAX+PLUS II allow the designer to control the logic synthesis of the
design. If a design has combinatorial logic that fits into an EAB, the
designer can manually place the logic, or have MAX+PLUS II
automatically place the logic in the EAB.

f Go to MAX+PLUS II Help for more information about implementing
complex combinatorial functions in EABs.

Encoded
Data In

Data Out

EAB
1,024 × 2

10 2

Error

2

2

2

8

EAB
1,024 × 2

EAB
1,024 × 2

EAB
1,024 × 2

EAB
1,024 × 2
18 Altera Corporation

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
On-the-Fly
Reconfiguration

The contents of an EAB can be changed at any time without reconfiguring
the entire FLEX 10K device. Therefore, the operation of logic in a portion
of a design can be changed while the rest of the device continues to
operate.

To implement on-the-fly reconfiguration, a multiplexer drives the address
input of the EAB. The data input, which normally drives the EAB address
input directly, drives one input of the multiplexer; an external data source
drives the other multiplexer input. A reconfiguration signal drives the
Write Enable (WE) on the EAB, the select line of the multiplexer, and an
input of the external data source. When the reconfiguration signal is low,
the EAB implements its stored logic function. Incoming data drives the
address input of the EAB, which drives the corresponding data output to
its output port.

To change the logic function in the EAB, the reconfiguration signal must
be driven high, which enables WE on the EAB and sets the address
multiplexer to be driven by the external data source. The external data
source could be a RAM, ROM, or CPU. For example, while the EAB
operates, a CPU can calculate a new pattern for the EAB and reconfigure
the EAB at any time. The external data source then places the new pattern
in the EAB. After reconfiguration is complete, the reconfiguration signal
is driven low, and the EAB is ready to implement logic functions again.
See Figure 14.

Figure 14. Reconfigurable Logic in the EAB
EAB

ADDR

WE

D Data Out

Data In

Reconfigure

Off Device

0

1

External Data
Source

ADDR

D

Configure

Q

Altera Corporation 19

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

More innovative applications of on-the-fly reconfiguration are possible.
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document. Altera
products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights,
and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the
latest version of device specifications before relying on any published information and
before placing orders for products or services.

U.S. and foreign patents pending.

Copyright 1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

20 Altera Corporation

For example, if two EABs are arranged in parallel, one of the EABs can be
used for logic at any time while the other is dormant. Multiplexers can
send data into the active EAB, and the dormant EAB can have a different
configuration. Switching the multiplexers determines whether an EAB is
active or dormant. The dormant EAB can be reconfigured from an
external data source while the active EAB performs a logic function. This
implementation allows a new logic function to be implemented without a
long reconfiguration delay, provided the designer does not switch the
multiplexers before the dormant EAB finishes reconfiguring.

The system can modify the data stored in the EAB if the external data
source is a RAM. When using an external RAM, the system can modify the
configuration to be programmed into an EAB, so all possible
configurations of the EAB do not have to be defined. For example, if the
coefficients in an active digital filter are stored in an EAB, the
characteristics of the filter can be changed on-the-fly by modifying the
coefficients. The coefficients are modified by writing to the RAM.

Conclusion FLEX 10K devices are the first PLDs to contain embedded arrays. The
FLEX 10K embedded arrays, composed of a series of EABs, allow
designers to implement complex logic functions in a single level of logic.
Using EABs to implement logic functions results in higher device
utilization and performance. The flexibility of an EAB makes it
well-suited to implement a variety of specialized logic applications and
combinatorial functions.
Printed on Recycled Paper.

	Contents
	PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices
	Introduction
	Logic Cells vs. EABs
	Configuring the EAB as a Look-Up Table
	Embedded vs. Distributed RAM
	Applications
	Symmetric Multiplier
	Parallel Multiplier
	Time-Domain-Multiplexed Multiplier

	Asymmetric Multiplier
	Constant Multiplier�/�Vector Scalar
	Digital Filter
	Two-Dimensional Convolver
	State Machine
	General-Purpose State Machine
	Limited-Transition State Machine

	Transcendental Functions
	Waveform Generator
	8 Bit-to-10 Bit Encoder
	Other Applications

	On-the-Fly Reconfiguration
	Conclusion

