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Introduction Altera’s FLEX 10K devices are the first programmable logic devices 
(PLDs) to contain embedded arrays, which allow designers to quickly 
create, prototype, and debug complex designs. Unlike embedded 
functions in a gate array, the FLEX 10K embedded array is fully 
programmable, giving the designer complete control over the functions 
programmed in the embedded array. The FLEX 10K embedded array is 
composed of a series of embedded array blocks (EABs), which can be used 
to implement memory and logic functions. EABs can also be reconfigured 
on-the-fly, allowing designers to change a portion of a design without 
disturbing the operation of the rest of the device.

This product information bulletin describes the capabilities of the 
FLEX 10K embedded array, and how designers can use the EAB to 
implement logic in a variety of applications. The following topics are 
discussed:

■ Logic cells vs. EABs
■ Configuring the EAB as a look-up table
■ Embedded vs. distributed RAM
■ Applications
■ On-the-fly reconfiguration

Logic Cells
vs. EABs

Logic cells, which contain combinatorial logic and registers, can 
implement relatively simple functions such as one bit of an adder or a 
small multiplexer. To implement complex, high fan-in functions, the 
function must be divided among multiple logic cells, which are connected 
using additional logic. The number of logic cells required increases 
rapidly as the function becomes more complex. 

In contrast, the FLEX 10K embedded array implements complex functions 
in a single logic level, resulting in more efficient device utilization and 
higher performance. Thus, many complex functions implemented in an 
EAB will occupy less area on a device, have a shorter delay, and operate 
faster than functions implemented in logic cells.

An EAB can implement any combinatorial function, such as a 4 × 4 
multiplier, provided the function does not exceed the permitted number 
of inputs and outputs to the EAB. Depending on its configuration, an EAB 
can have 8 to 11 inputs and 1 to 8 outputs, all of which can be registered 
for pipelined designs. See Table 1.     
Altera Corporation  1

A-PIB-021-01



 

PIB 21: Implementing Logic with the Embedded Array in FLEX 10K Devices

                     
EABs can be cascaded to implement functions that require more inputs or 
outputs than are available in a single EAB. Each EAB can have a 
maximum of 11 inputs and 1 output. Therefore, a function with 11 inputs 
and 2 outputs is divided into two EABs, so that each EAB has 11 inputs 
and 1 output.

Reconfiguring the EAB for a different number of inputs and outputs does 
not affect its performance. The delay in an EAB remains constant, 
provided the function fits into the EAB (i.e., has a permissible number of 
inputs and outputs). Likewise, the delay in each EAB is the same for two 
functions that each fit into an EAB. For instance, the delay in the EAB for 
a 6-input function and the delay in the EAB of an 8-input function are the 
same. 

In addition, the timing performance in an EAB does not change as its 
configuration size changes. EABs can be cascaded to form RAM blocks up 
to 2,048 words without affecting performance. The EAB RAM size is 
flexible and can be configured as any of the following sizes: 256 × 8, 
512 × 4, 1,024 × 2, or 2,048 × 1. The appropriate configuration size depends 
on the function to be implemented; for instance, an EAB is configured as 
256 × 8 to implement an 8-input, 8-output function. Larger RAMs are 
created by combining multiple EABs. Thus, two 256 × 8 RAMs can be 
combined to form a 256 × 16 RAM without a timing penalty.

Configuring the 
EAB as a 
Look-Up Table

Logic functions are implemented by programming the EAB during 
configuration with a read-only pattern, creating a large look-up table 
(LUT). The pattern can be reconfigured during device operation to change 
the logic function. The LUT looks up the results of the functions rather 
than using algorithms to calculate them.

When a logic function is implemented in an EAB, the input data is driven 
in on the address input of the EAB. The result is looked up in the LUT and 
driven out on the output port. Using the LUT to find the result of a 
function is faster than using algorithms implemented in general logic.

Table 1. Inputs and Outputs per EAB

Inputs Outputs

8 8

9 4

10 2

11 1
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For example, in a 4 × 4 multiplier with two 4-bit inputs and one 8-bit 
output implemented in an EAB, the two input buses drive the address 
inputs of the EAB. The data output of the EAB drives out the product.
See Figure 1.

Figure 1. Implementing a 4 × 4 Multiplier in an EAB

The EAB acts as a LUT to find the product. Table 2 shows part of the 
pattern used to implement a 4 × 4 multiplier. Values are shown in 
hexadecimal radix.     

EAB

ADDR[7..4]

ADDR[3..0]

Q[7..0]

A[3..0]

B[3..0]

Q[7..0]

A[3..0]

B[3..0]
Q[7..0]

Table 2. Portion of EAB Pattern for Implementing a 4 × 4 Multiplier

ADDR[7..4]
(Input A)

ADDR[3..0]
(Input B)

Q[7..0]
(Product)

0 0 00

0 1 00

2 4 08

7 2 0E

A A 64

A B 6E
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Embedded vs. 
Distributed 
RAM

The FLEX 10K embedded RAM implements logic functions more 
efficiently than distributed RAM. Distributed RAM, as used in field-
programmable gate arrays (FPGAs), allows the designer to use a 
particular array of memory cells either as part of the general logic array or 
as addressable RAM. However, using distributed RAM provides only 
small RAM blocks such as 16 × 2 or 32 × 1. Using distributed RAM for 
applications larger than 32 × 1 results in lower performance and lower 
device utilization. To create larger RAM blocks, the small RAM blocks 
must be interconnected using additional logic cells. However, adding 
logic cells can cause less predictable delays, routing problems, and can 
reduce the amount of available logic for implementing other functions. 
Therefore, there is no advantage gained from implementing logic 
functions with distributed RAM than with logic cells.

In contrast, FLEX 10K devices dedicate a portion of the device to 
embedded RAM. Embedded RAM is implemented in the EAB, which is a 
large block of flexible RAM. Altera’s MAX+PLUS II development 
software automatically cascades EABs to implement blocks of RAM larger 
than 2,048 × 1. Because the EAB is inherently a large RAM block, the EAB 
can implement complex logic functions in a single logic level, so 
additional logic cells are not required. FLEX 10K devices can offer as 
much as 24 Kbits of RAM without sacrificing logic capacity. Therefore, 
implementing logic functions with embedded RAM in FLEX 10K EABs 
results in higher resource utilization and predictable performance.

Manufacturers of distributed-RAM FPGAs claim that embedding large 
blocks of RAM into a programmable device is inefficient because die area 
is wasted if a design does not use RAM. However, EABs that are not used 
as memory will be used as logic, and most designs will contain some 
complex logic functions that can be implemented by EABs.

Applications EABs can be used for a variety of specialized logic applications, including:

■ Symmetric multiplier
■ Asymmetric multiplier
■ Constant multiplier/vector scalar
■ Digital filter
■ Two-dimensional convolver
■ State machine
■ Transcendental functions
■ Waveform generator
■ 8 bit-to-10 bit encoder
4 Altera Corporation
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Symmetric Multiplier

A symmetric multiplier multiplies two inputs of the same width. An EAB 
can easily implement a 4 × 4 multiplier, which has two 4-bit inputs and 
one 8-bit output. The EAB drives the two multiplicands into the address 
input and reads the product from the data output. For example, to 
multiply the number 2 by the number 4, 4 bits of the address input 
represent the number 2, and the other 4 bits represent the number 4. 
Because multiplication is commutative, address locations 24 and 42 both 
store the value 08.

Designers can create larger multipliers by using parallel multipliers or 
time-domain-multiplexed multipliers to combine EABs.

Parallel Multiplier

A parallel multiplier uses multiple EABs to generate all partial products 
in parallel. A parallel multiplier uses 4 EABs for an 8 × 8 multiplier 
(i.e., 1 EAB for each partial product). Each of the 4 EABs simultaneously 
processes a portion of the input to generate a 4 × 4 product, yielding a 
total of four 4 × 4 products. A two-stage adder implemented in the logic 
cells produces the final result. For example, MN is multiplied by XY in 
Figure 2. Each letter in the multiplicands represents four bits of the input; 
M represents the four most significant bits (MSBs), and N represents the 
four least significant bits (LSBs). Before summing the products, the 
products are multiplied by 16n (where n = 0, 1, 2...) to account for their 
relative significance in hexadecimal radix. Larger multipliers are created 
with additional EABs.

Figure 2. 8 × 8 Multiplier Implemented in an EAB      

MN
×   XY

One EAB computes
each partial product.

Adder sums the
shifted products.

 

MY NY
                 + MX NX

       MX × 162  +  (MY + NX) × 161  +  NY × 160
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Time-Domain-Multiplexed Multiplier

A time-domain-multiplexed multiplier uses a single EAB to generate all 
the partial products on different Clock cycles. Multiplexers at the input of 
the EAB route the appropriate inputs into the EAB, and the EAB calculates 
each partial product at a different time. After each multiplication is 
performed, the products are multiplied by 16n (i.e., shifted left) to account 
for their relative significance in hexadecimal radix. An accumulator adds 
the four partial products to produce the final result. For an 8 × 8 
multiplier, the time-domain-multiplexed multiplier requires four Clock 
cycles. The required number of Clock cycles can be reduced by using more 
EABs. Larger multipliers are created with additional EABs, or by 
increasing the required number of Clock cycles.

Asymmetric Multiplier

An asymmetric multiplier multiplies two inputs of different widths. For 
example, one EAB can implement a multiplier that multiplies a 2-bit input 
by a 6-bit input to create an 8-bit output. Like symmetric multipliers, 
larger asymmetric multipliers are created using parallel multipliers or 
time-domain-multiplexed multipliers to combine multiple EABs. Each 
EAB computes one of the partial products, and adders are used to sum the 
products. Therefore, a 10 × 6 multiplier can be created from 5 EABs. 
Figure 3 shows how each EAB in an asymmetric multiplier computes a 
partial product. 

Figure 3. Asymmetric Multiplier Implemented in an EAB   

Values are shown in hexadecimal radix.       

f Go to Application Note 53 (Implementing Multipliers in FLEX 10K Devices) for 
more information about implementing multipliers. 

LY MY                NY
+ LX  MX  NX

LMN
×         XY

  LX × 163  +  (LY + MX) × 162  +  (MY + NX) × 161  +  NY × 160
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Constant Multiplier / Vector Scalar

The embedded array can efficiently implement constant multipliers. The 
constant multiplier is used for datapath applications such as video and 
digital signal processing (DSP) that require a series of numbers (a vector) 
to be multiplied or scaled by a constant.

The value of the constant determines the EAB pattern used to implement 
the function. The contents of an EAB LUT can be changed at any time 
because the EAB can be reconfigured. The value of the constant changes 
whenever the RAM is modified. 

1 See “On-the-Fly Reconfiguration” in this product information 
bulletin for more information.

Depending on the width and the required precision of the data, one or 
more EABs can be used to perform the multiplication. For instance, one 
256 × 8 EAB can multiply a 4-bit number by 13 (a 4-bit value) without any 
truncation. The 4-bit input drives the address input, and the output 
appears on the data output.

The required precision of the output must be determined before 
multiplying larger numbers in an application. If the output does not 
require full precision, the output can be truncated to minimize the 
number of EABs needed to calculate the result. If precise output is 
required, multiple EABs must be used. For example, if a series of 8-bit 
variables are multiplied by an 8-bit constant, the result could be as large 
as 16 bits. If only 8-bit precision is required, one EAB can calculate the 
product because the 256 × 8 EAB has 8-bit-wide input and output ports. If 
full precision is required, one EAB calculates the 8 MSBs, and another 
EAB calculates the 8 LSBs. Figure 4 shows how a constant multiplier is 
implemented in multiple EABs.

Figure 4. Constant Multiplier Implemented in Multiple EABs      

Computes the 8 LSBs
8 16

8

8 EAB
256 × 8

EAB
256 × 8

Computes the 8 MSBs
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Digital Filter

Digital systems are being used more frequently for filtering applications. 
A common digital filter is the finite impulse response (FIR) filter, which 
shifts incoming data through a series of registers. The output of each bank 
of registers is called a tap. The output per time period is the sum of all 
taps, which is calculated by multiplying each tap by a coefficient and 
summing the products.

The filter’s frequency response is determined by the value of the 
coefficients used in the design. In a linear phase response FIR filter, the 
coefficients are symmetric, i.e., the coefficient for tap n is equal to the 
coefficient for tap (m – n – 1), where m is the total number of taps. For 
example, if there are 8 taps, the coefficients for tap 1 and tap 6 are equal. 
Because the coefficients for tap 1 and tap 6 are equal, only half the number 
of multipliers are needed to calculate the output per time period; using the 
distributive property of multiplication, the taps with the same coefficients 
are summed before multiplication, e.g., ac0 + bc0 = c0(a + b), where c0 is a 
coefficient. Figure 5 shows a schematic diagram of a 4-tap FIR filter.

Figure 5. 4-Tap FIR Filter

Data In
8

Data Out

D D DD

Coefficient multiplication
is performed in the
embedded array.

8

9 9

8 8 8 8

Multiply by C0 Multiply by C1
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The EAB, configured as a LUT, can implement a FIR filter by performing 
the coefficient multiplication for all taps. The multiplication for all taps is 
spread across several EABs, with each EAB calculating the partial 
products for 1 bit of each tap. For example, EAB 0 calculates the partial 
products for bit 0 of each tap. Then, the EAB outputs are summed by an 
adder in the logic array. The FLEX 10K carry chain is designed to 
implement fast, compact adders.

The required precision on the output and the number of taps in the FIR 
filter determine the EAB configuration used to implement the FIR filter. 
For 8-bit precision on the output, each EAB is configured with 8 outputs. 
The number of taps in the FIR filter determines the number of inputs 
required for each EAB; if the coefficients are symmetric, only half the 
number of inputs are required because the filter can sum the taps with the 
same coefficients before multiplying. Thus, using EABs with 8 inputs 
implements a FIR filter with a maximum of 16 taps.

Implementing a FIR filter with an embedded array can be more efficient 
than implementing a FIR filter with logic elements (LEs). An EAB has up 
to 8 inputs and 8 outputs, and could implement a 16-tap FIR filter without 
using complex logic to compute the coefficient multiplication. An LE has 
only 4 inputs, and would require multiple levels of logic to implement a 
FIR filter that required more than 8 taps. The EAB can be reconfigured 
on-the-fly, allowing the coefficients used in the FIR filter to be changed 
without disturbing the operation of the rest of the device.

Two-Dimensional Convolver

The embedded array can efficiently implement two-dimensional 
convolvers, which are used to process video images. For example, the 
convolver sharpens the edges of a picture for output in a technique called 
edge enhancement. The convolver processes the video information in 
small pieces, such as a 3 × 3 matrix, and then multiplies each pixel in the 
matrix by a constant coefficient. Because the coefficient values are usually 
symmetric, the number of multipliers needed is reduced by summing the 
multiplicands with the same coefficient before multiplying. The new 
value of the center pixel is the sum of all the matrix multiplications. 
Figure 6 shows a block diagram of a two-dimensional convolver.
Altera Corporation  9
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Figure 6. Two-Dimensional Convolver      

Xn represents the value of a pixel.            

In general, the convolver and the FIR filter process data in a similar 
manner. FIR filters process a one-dimensional stream of data, and do not 
require first-in-first-out (FIFO) buffers for storing the data. Convolvers 
process a two-dimensional matrix of data, and the FIFO buffers store the 
data that is driven in from the inputs. The FIFO buffers are implemented 
with EABs. In the convolver implementation shown in Figure 6, two line 
FIFOs buffer each line as it is driven in from the external source. The depth 
of the FIFO buffer equals the width of the video matrix. 

D

D

Data In D D D

D

D

D

D

X1 X2

X3 X4 X5

X6 X7 X8

FIFO

FIFO

Data Out

X4

X0
X2
X6
X8

X3

X5

X1

X7

Multiply by C0

Multiply by C1

Multiply by C2

Multiply by C3

X0
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Like a FIR filter, the convolver is implemented with an EAB configured as 
a LUT that performs the coefficient multiplication. Four taps are required 
in Figure 6. Because the number of inputs to the LUT equals the number 
of taps required, only 4-input LUTs are required to implement the 
convolver. This convolver can be implemented in a FLEX 10K LE, which 
has four inputs.

Depending on the type of video processing desired, some of the tap 
coefficients may be equal. In Figure 6, the coefficient of the 4 taps 
(X0, X2, X6, X8) is the same (C1); therefore, the outputs of the 4 taps are 
summed before multiplication. If 8-bit data is convolved, the sum is 10 
bits. For 10-bit precision on the input, 10 LUTs are required. Each of the 10 
LUTs requires 8 outputs for 8-bit precision on the output.

State Machine

The embedded array can also be used to implement highly complex state 
machines. As a state machine becomes more complex (i.e., has additional 
transitions), the number of LEs required to implement the state machine 
increases, but the number of EABs required remains constant. The 
number of EABs required to implement a state machine is simply a 
function of the number of states, inputs, and outputs to the state machine. 
Therefore, the same number of EABs is required for two state machines 
with a different number of transitions but with the same number of states, 
inputs, and outputs.

The embedded array can implement general-purpose and limited-
transition state machines. General-purpose state machines can have 
complex transitions between states, but in turn have only a finite number 
of states. Limited-transition state machines can implement more states in 
a given amount of logic, but consequently cannot have very complex 
transitions. 

General-Purpose State Machine

The embedded array effectively implements general-purpose state 
machines with very complex transitions between states. The number of 
EABs required to implement the state machine does not change if the 
transitions become more complex. 
Altera Corporation  11
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The address input to the EAB is a combination of bits representing the 
inputs to the state machine and the current state. For example, in a 16-
state, 4-input, 4-output state machine, signals representing the 4 inputs to 
the state machine drive ADDR[7..4], and signals representing the current 
state drive ADDR[3..0]. Each address input to the EAB contains two 
fields: the outputs for the current state and state bits that indicate the next 
state. To design a Moore state machine, the design uses the input registers 
of the EAB. To design a Mealy state machine, the design uses LEs to 
register only the address bits that represent the current state. Figure 7 
shows the implementation of a 16-state, 4-input, 4-output Moore state 
machine.

Figure 7. Moore State Machine Implemented in an EAB

Figure 8 shows a state machine implemented in a portion of an EAB. The 
contents of the table control the behavior of the state machine. For 
example, in state 0 with state machine inputs equal to 0, the state machine 
transitions to state 1; in state 1 with state machine inputs equal to 5, the 
state machine transitions to state 5. These transitions are indicated in the 
first and fifth rows of the table, respectively.

ADDR[3..0]

ADDR[7..4]

Q[3..0]

Q[7..4]

EAB
256 × 8

Input

Registered
Inputs

Output
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Figure 8. State Machine Inputs Implemented in a Portion of an EAB 

State machine input and output values are shown in hexadecimal radix.     

State State Machine Inputs
ADDR[7..4]

Current State
ADDR[3..0] 

Outputs
Q[7..4]

Next State
Q[3..0]

S0 0 0 0 1

S0 1 0 0 2

S0 2 0 1 3

S1 4 1 3 0

S1 5 1 4 5

S2 A 2 1 1

S2 7 2 A 5

S3 2 3 C 1

S3 E 3 7 4

S4 0 4 2 5

S4 F 4 F 3

S5 3 5 2 5

S5 2 5 4 0

S0

S1

S2

S4

S5

S3

4

1

2

2
0

A

5

FE

3
0

2

7
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The size of the state machine’s required memory is calculated from its 
memory width and memory depth. Memory width is a function of the 
number of outputs and the number of states; memory depth is a function 
of the number of inputs and the number of states.

Memory width = Q + C (log2 (S))

Memory depth = 2 (D + C ( log2 (S)))

where Q  =  Number of outputs
C  =  Ceiling (The ceiling function returns the next highest integer

value, i.e., ceiling (1.0) = 1, ceiling (1.1 ... 1.9) = 2.)
S  =  Number of states
D  =  Number of inputs

If the required memory space is larger than can fit into one EAB, the 
MAX+PLUS II development software can cascade multiple EABs to create 
the required memory space. 

Limited-Transition State Machine

A limited-transition state machine can implement more states in a given 
amount of logic, but consequently cannot have very complex transitions 
between states. Figure 9 shows a hold-or-transition state diagram for a 
limited-transition state machine.

Figure 9. Hold-or-Transition State Diagram    

An EAB can control whether a limited-transition state machine remains in 
the current state or transitions to the next state. First, the inputs to the state 
machine drive the combinatorial logic implemented in the logic array. The 
combinatorial logic controls the Count Enable (CNT_EN) of the counter. 
Then, the outputs of the counter drive the EAB inputs, which produce the 
outputs for that state. For example, an 8-bit counter with one EAB can 
implement an 8-output, 256-state state machine. See Figure 10.

S0 S2 S3 S4 S5 S6S1
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Figure 10. Implementing a Hold-or-Transition State Machine

If a state machine requires fewer than the maximum number of possible 
states, the counter can be reset by adding logic. The counter resets after 
reaching a count value that equals the required number of states. 
Therefore, if an 8-output state machine with a maximum of 256 states 
requires only 200 states, adding logic will reset the counter when it 
reaches 199 states.

Transcendental Functions

Calculating transcendental functions—such as sine, cosine, and 
logarithms—with small logic blocks is slow and consumes a large die 
area. Transcendental functions are non-linear, so they are difficult to 
compute using algorithms. It is more efficient to implement 
transcendental functions by looking up the results in large LUTs, which 
can be implemented with EABs. 

When using an EAB to implement a transcendental function, the input 
drives the address input of the EAB, and the output appears at the data 
output. Each address location in the EAB stores the result of its input 
(e.g.,  the result of the function implemented with input = 10 is stored in 
address location 10).

Rather than duplicating entries for +n and –n in symmetric functions 
(e.g., cos(+n) = cos(–n), and sin(+n) = –sin(–n)), transcendental functions 
use the sign bit to determine whether the output should be inverted. To 
compute the sine function, for example, the EAB stores the values for one 
quadrant of the function. Based on the value of the input, the LE computes 
the results for the other quadrants by determining whether the inputs or 
outputs of the EAB should be inverted. Figure 11 shows how the values 
for one quadrant of the sine function can repeat for the rest of the function.

OutputInput
Combinatorial

Logic
A[7..0] Q[7..0]

EAB
256 × 8

CNT_EN Q[7..0]

Counter
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Figure 11. Computing the Sine Function

Computing transcendental functions with an EAB produces a high-
resolution result, where resolution is the minimum change in input to 
change in output. An EAB produces high-resolution results because it can 
implement functions with high numbers of inputs, whereas LEs cannot 
easily implement such complex functions. The more entries that can be 
stored in the EAB, the higher the resolution. One EAB can store 256 8-bit 
entries. Therefore, an EAB used to calculate a symmetric function 
effectively has 1,024 8-bit entries because symmetric functions can use 
each entry in the EAB 4 times, once for each quadrant of the function. For 
example, computing a sine wave with an EAB produces a resolution of 
0.35°. 

To increase the precision and resolution on the output of the 
transcendental function, multiple EABs are used. To increase the 
precision, 1 EAB can look up the 8 MSBs while another EAB looks up the 
8 LSBs of the result. To increase resolution, 2 EABs can be used to emulate 
a 512 × 8 ROM, which provides 2,048 8-bit entries and a resolution of 
0.18°. 

Waveform Generator 

After a sine function has been implemented, the EAB can generate a sine 
wave. If a counter drives the input of the sine function, the output is a 
digitized sine wave, and this digital output can be driven to a digital-to-
analog converter. A sine wave can be used for various DSP functions.

EAB outputs
are inverted.

EAB inputs
are inverted.

EAB only stores values for one quadrant; other
quadrants are produced by inverting inputs
and/or outputs.

EAB inputs
and outputs
are inverted.
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The EAB can be used to generate waveforms that repeat over time 
(e.g., sine wave). The waveform generator is implemented with a counter 
that drives the address input of the EAB, and the waveform output 
appears on the output of the EAB. Because an EAB can be up to 8 bits 
wide, 1 EAB can simultaneously generate 8 waveforms. Multiple EABs 
can be cascaded to generate additional waveforms. The waveform can be 
irregular within its period because it is created with an LUT.

8 Bit-to-10 Bit Encoder 

An 8 bit-to-10 bit encoder is used in telecommunications systems. In 
asynchronous serial telecommunications, the receiving system must 
synchronize itself while reading the incoming serial data. If the incoming 
serial data contains a long sequence of 0 or 1 values, the receiving system 
has trouble synchronizing itself because it cannot detect exactly how 
many 0s or 1s it has received. To prevent a long sequence of 0s or 1s, the 
sending system encodes each byte of data into a 10-bit code. There are 768 
possible combinations of 10-bit data code that do not correspond to a byte 
(10-bit data code has 1,024 combinations and a byte has only 256 
combinations). If the incoming data code does not correspond to a byte, 
the receiving system assumes there has been a data transmission error and 
signals the sending system to re-transmit the data.

Implementing the encoding or decoding circuits consumes many small 
logic blocks because the relationship between the 8-bit and 10-bit data is 
non-linear. 

Two 256 × 8 EABs configured as LUTs can be used to encode 8-bit data 
into 10-bit data. Each EAB is fed by the 8-bit incoming data. One EAB 
looks up the 5 LSBs of the output, and the other looks up the 5 MSBs. A 
shift register on the output can serialize the outgoing data. See Figure 12.

Figure 12. 8 Bit-to-10 Bit Encoder

Data In
EAB

256 × 8

EAB
256 × 8

8 5 10

5

Encoded
Data Out

Computes the 5 LSBs

Computes the 5 MSBs
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The incoming data is decoded using 4 EABs, each configured as 1,024 × 2. 
The 10-bit encoded data feeds each EAB, which generates 2 bits of the 
original data byte. An additional EAB can detect whether one of the 768 
illegal 10-bit combinations is received. A shift register can be used on the 
input to convert incoming serial data to parallel data. Figure 13 shows the 
implementation of this 10 bit-to-8 bit decoder.

Figure 13. 10 Bit-to-8 Bit Decoder     

Other Applications

In addition to the specialized logic applications described in this 
document, the capabilities of FLEX 10K EABs also allow designers to 
implement a wide variety of complex combinatorial functions. New 
combinatorial functions can easily be implemented in the EAB using 
Altera’s MAX+PLUS II development software. Logic options in 
MAX+PLUS II allow the designer to control the logic synthesis of the 
design. If a design has combinatorial logic that fits into an EAB, the 
designer can manually place the logic, or have MAX+PLUS II 
automatically place the logic in the EAB.

f Go to MAX+PLUS II Help for more information about implementing 
complex combinatorial functions in EABs.
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On-the-Fly 
Reconfiguration

The contents of an EAB can be changed at any time without reconfiguring 
the entire FLEX 10K device. Therefore, the operation of logic in a portion 
of a design can be changed while the rest of the device continues to 
operate. 

To implement on-the-fly reconfiguration, a multiplexer drives the address 
input of the EAB. The data input, which normally drives the EAB address 
input directly, drives one input of the multiplexer; an external data source 
drives the other multiplexer input. A reconfiguration signal drives the 
Write Enable (WE) on the EAB, the select line of the multiplexer, and an 
input of the external data source. When the reconfiguration signal is low, 
the EAB implements its stored logic function. Incoming data drives the 
address input of the EAB, which drives the corresponding data output to 
its output port.

To change the logic function in the EAB, the reconfiguration signal must 
be driven high, which enables WE on the EAB and sets the address 
multiplexer to be driven by the external data source. The external data 
source could be a RAM, ROM, or CPU. For example, while the EAB 
operates, a CPU can calculate a new pattern for the EAB and reconfigure 
the EAB at any time. The external data source then places the new pattern 
in the EAB. After reconfiguration is complete, the reconfiguration signal 
is driven low, and the EAB is ready to implement logic functions again. 
See Figure 14.

Figure 14. Reconfigurable Logic in the EAB     
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More innovative applications of on-the-fly reconfiguration are possible. 
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For example, if two EABs are arranged in parallel, one of the EABs can be 
used for logic at any time while the other is dormant. Multiplexers can 
send data into the active EAB, and the dormant EAB can have a different 
configuration. Switching the multiplexers determines whether an EAB is 
active or dormant. The dormant EAB can be reconfigured from an 
external data source while the active EAB performs a logic function. This 
implementation allows a new logic function to be implemented without a 
long reconfiguration delay, provided the designer does not switch the 
multiplexers before the dormant EAB finishes reconfiguring.

The system can modify the data stored in the EAB if the external data 
source is a RAM. When using an external RAM, the system can modify the 
configuration to be programmed into an EAB, so all possible 
configurations of the EAB do not have to be defined. For example, if the 
coefficients in an active digital filter are stored in an EAB, the 
characteristics of the filter can be changed on-the-fly by modifying the 
coefficients. The coefficients are modified by writing to the RAM. 

Conclusion FLEX 10K devices are the first PLDs to contain embedded arrays. The 
FLEX 10K embedded arrays, composed of a series of EABs, allow 
designers to implement complex logic functions in a single level of logic. 
Using EABs to implement logic functions results in higher device 
utilization and performance. The flexibility of an EAB makes it 
well-suited to implement a variety of specialized logic applications and 
combinatorial functions.
Printed on Recycled Paper.
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